- Guaranteed To Run
- All Courses
- ALL MICROSOFT COURSES
- FUNDED COURSES
- SG ENABLE (FUNDED)
- About Us
- Insights
- Rewards Account Login
In this course, the student will learn about the data engineering as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how to create a realtime analytical system to create real-time analytical solutions.
The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.
• Explore compute and storage options for data engineering workloads in Azure
• Run interactive queries using serverless SQL pools
• Perform data Exploration and Transformation in Azure Databricks
• Explore, transform, and load data into the Data Warehouse using Apache Spark
• Ingest and load Data into the Data Warehouse
• Transform Data with Azure Data Factory or Azure Synapse Pipelines
• Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
• Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
• Perform end-to-end security with Azure Synapse Analytics
• Perform real-time Stream Processing with Stream Analytics
• Create a Stream Processing Solution with Event Hubs and Azure Databricks
Module 1: Explore compute and storage options for data engineering workloads
Module 2: Run interactive queries using Azure Synapse Analytics serverless SQL pools
Module 3: Data exploration and transformation in Azure Databricks
Module 4: Explore, transform, and load data into the Data Warehouse using Apache Spark
Module 5: Ingest and load data into the data warehouse
Module 6: Transform data with Azure Data Factory or Azure Synapse Pipelines
Module 7: Orchestrate data movement and transformation in Azure Synapse Pipelines
Module 8: End-to-end security with Azure Synapse Analytics
Module 9: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
Module 10: Real-time Stream Processing with Stream Analytics
Module 11: Create a Stream Processing Solution with Event Hubs and Azure Databricks
Avantus Training began from the need to develop a skilled pool of technology talent for the community; keeping abreast of the constantly evolving IT landscape. Since, we have been recognized for our ability to be a life-long training partner and mentor for every individual.